1、如图,正方形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=8cm,则EF的长度为( )
A.1cm
B.2cm
C.2cm
D.4cm
2、如图,在四边形ABCD中,AB∥CD,∠C=90°,AB=8,AD=CD=5,点M为BC上异于B、C的一定点,点N为AB上的一动点,E、F分别为DM、MN的中点,当N从A到B的运动过程中,线段EF扫过图形的面积为 ( )
A.4
B.4.5
C.5
D.6
3、如图,是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从正侧看到的该几何体的平面图形是( )
A. B.
C.
D.
4、如图,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=42°,则∠ABD的大小为( )
A.68° B.58° C.48° D.21°
5、已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是( )
A. 0 B. 1 C. 2 D. 3
6、下列几何体的左视图是( )
A. B.
C.
D.
7、如图,AB和CD是⊙O的两条直径,弦DE∥AB,若弧DE为40°的弧,则∠BOC=( )
A. 110° B. 80° C. 40° D. 70°
8、中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
9、将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,…,按此规律排列下去,第六个图形中正三角形的个数是( )
A. 35 B. 41 C. 45 D. 51
10、如图,一个正六棱柱的表面展开后正好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出3cm,宽留出0.5cm,则该六棱柱的侧面积是( )
A. B.
C.
D.
11、一家水果店购进一批盒装荔枝、樱桃和草莓,并全部组合成“天生荔质”(内装4盒荔枝)、“樱有尽有”(内装6盒樱桃)、“喜上莓梢”(内装8盒草莓)三款礼盒进行销售,其中“天生荔质”与“喜上莓梢”礼盒的数量之和比“樱有尽有”礼盒数量的2倍少30套,且所有礼盒全部卖出.第二次该水果店购进与第一次数量分别相同的盒装荔枝、樱桃和草莓,也是全部组合成礼盒进行销售.根据顾客反馈信息,第二次销售除了第一次的三款礼盒(每款礼盒规格与第一次相同),还组合成“春遇”、“春见”两款混合水果礼盒若干套,其中每套“春遇”礼盒包含:1盒荔枝、4盒樱桃、5盒草莓;每套“春见”礼盒包含:1盒荔枝、3盒樱桃、4盒草莓.若第二次的所有礼盒也全部卖出,且第二次“天生荔质”礼盒的数量是第一次该种礼盒数量的,第二次“喜上莓梢”礼盒共有61套,“春遇”和“春见”礼盒中所有水果的总盒数比“春遇”礼盒中荔枝的盒数多1352盒,则第一次销售的所有礼盒共有________套.
12、如图,在Rt△ABC中,∠A=30°,BC=,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是_____.
13、某商品的进价为120元,8折销售仍赚40元,则该商品标价为_________元.
14、如图,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC顶点A、C分别在ON、OM上,点D是AB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____.
15、若关于的一元二次方程
的解为
,
,则关于
的一元二次方程
的解为________.
16、已知关于x的一元二次方程ax2+x+a2﹣2a=0的一个根是x=0,则系数a=_____.
17、某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.
(1)该水果店两次分别购买了多少元的水果?
(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?
18、如图,是
的直径,点C为
上一点,点P是半径
上一动点(不与
重合),过点P作射线
,分别交弦
于
两点,在射线
上取点F,使
.
(1)求证:是
的切线.
(2)当点E是的中点时,若
,判断以
为顶点的四边形是什么特殊四边形,并说明理由.
19、(1)将Rt△AOB和Rt△COD按如图①所示放置,其中∠AOB=∠COD=90°,∠OAB=∠OCD=30°,求证:BD⊥AC.
(2)如图②所示,将图①中的△OCD绕点O旋转到点C,D,B三点一线时,若AB=7,CD=3,求线段BD的长.
20、怀宁县为了“创建文明城市,建设美丽家园”,某社区将辖区内的一块面积为的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为
,种草所需费用
(元)与
的函数解析式为
;栽花所需费用
(元)与
的函数关系式为
.
(1)设这块空地的绿化总费用为
(元),请利用
与
的函数关系式,帮社区求出
的最大值;
(2)若种草部分的面积不少于,栽花部分的面积不少于
,请求出
的最小值.
21、如图,二次函数的图象与x轴交于点A,B,与y轴交于点C,顶点D的横坐标为1
(1)求二次函数的表达式及A,B的坐标;
(2)如图2,过B,C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,轴交线段BC于F点,过点F作
于E点.设
,求m的最大值及此时P点坐标;
(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线与新图象G有4个公共点时,求k的取值范围.
22、列方程或方程组解应用题:
为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工.按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列车时速是最慢列车时速的倍,求京张高铁最慢列车的速度是多少?
23、如图,在平行四边形ABCD中,按下列步骤作图:
①以点B为圆心,以适当长为半径作弧,交AB于点M.交BC于点N;
②再分别以点M和点N为圆心,大于的长为半径作弧,两弧交于点G;
③作射线BG交AD于F;
④过点A作AE⊥BF交BF于点P,交BC于点E;
⑤连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=8,AD=10,∠ABC=60°,求DP的长.
24、先化简,再求值:(1﹣)÷
,其中x=2sin45°+1.
邮箱: 联系方式: