1、已知二次函数 (a≠0)的图象如图所示,
有下列结论:
①a、b同号;
②当x=1和x=3时,函数值相等;
③4a+b=0;
④当-1<x<5时,y<0.
其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
2、如图,在平面直角坐标系中,反比例函数y=(k≠0)的图象经过等腰△AOB底边OB的中点C和AB边上一点D,已知A(4,0),∠AOB=30°,则k的值为( )
A.2 B.3
C.3 D.4
3、在Rt△ABC中,若∠C=90°,cosA=, 则sinA的值为( )
A. B.
C.
D.
4、已知和
满足方程组
,则代数式
的值为( )
A. 1 B. 6 C. 7 D. 12
5、若方程无解,则m=( )
A.1 B.2 C.4 D.前面几个都不对
6、的绝对值是( )
A.
B.
C.
D.
7、已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为( )
A. 21×10﹣4千克 B. 2.1×10﹣6千克
C. 2.1×10﹣5千克 D. 2.1×10﹣4千克
8、下列各式计算错误的是( )
A.
B.
C.
D.
9、如图,OP是∠MON的角平分线,点A是ON上一点,作线段OA的垂直平分线交OM于点B,交OA于点E,过点A作CA⊥ON交OP于点C,连接BC,AB=10cm,CA=4cm.则△OBC的面积为( )cm2.
A.40 B.30 C.20 D.10
10、如图,将△ABC的三边分别扩大一倍得到△(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是( ).
A. B.
C.
D.
11、若函数y=4x与y=的图象有一个交点是(
,2),则另一个交点坐标是________
12、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=,∠BCD=30°,则⊙O的半径是________.
13、在反比例函数的图象的每一条曲线上,
的增大而增大,则
的值可以是____.(填一个合适的整数)
14、如图,在中,
,
,
,以点
为圆心,6为半径的圆上有一个动点
.连接
、
、
,则
的最小值是_________.
15、如图,在中,
,
,点D是AB的中点,点E在AC上,点F在BC上,
,连接BE,若
,
,则
__________.
16、如图,是△
的中线,点
在边
上,且
⊥
,将△
绕着点
旋转,使得点
与点
重合,点
落在点
处,联结
交
于点
,如果
,那么
的值等于______.
17、计算:.
18、如图,已知抛物线y=﹣x2+bx+c与x轴相交于A(﹣1,0),与y轴相交于N(0,3),抛物线的顶点为D.经过点A的直线y=kx+1与抛物线y=﹣x2+bx+c相交于点C.
(1)求抛物线的解析式;
(2)若P是抛物线上位于直线AC上方的一个动点,设点P的横坐标为t,过点P作y轴的平行线交AC与M,当t为何值时,线段PM的长最大,并求其最大值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,请直接写出点E的坐标;若不能,请说明理由.
19、有一科技小组进行了机器人行走性能试验.在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,经过7min同时到达C点,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是 .m,甲机器人前2min的速度为 .m/min;
(2)若前3min甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)直接写出两机器人出发多长时间相距28m.
20、如图,在边长为2的正方形中,
为
的中点,
为边
上一动点,设
,线段
的垂直平分线分别交边
、
于点
、
,过
作
于点
,过
作
于点
.
(1)当时,求证:
;
(2)顺次连接、
、
、
,设四边形
的面积为
,求出
与自变量
之间的函数关系式,并求
的最小值.
21、如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线
(x<0)上,点A和点C分别在x轴,y轴的正半轴上,DM⊥x轴于M,BN⊥x轴于N,且点A、 B、 C、 D构成的四边形为正方形.
(1)k的值为___;
(2)求证:△ADM≌△BAN;
(3)求点A的坐标.
22、如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.
(1)问题发现
①当α=0°时,=_______;
②当α=180°时,=______.
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.
23、如图(1)是某公园里的一种健身器材,其侧面示意图如图(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求点D到地面的高度是多少?
24、如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.
(1)求抛物线的解析式;
(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值;
(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.
邮箱: 联系方式: