1、下列四个命题:
①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;
③三角形有且只有一个外接圆;④平分弦的直径垂直于弦;⑤过三点有且只有一个圆.
其中真命题的个数有( )
A.1个 B.2个 C.3个 D.4个
2、下列图形中,不是轴对称图形的是( )
A. B.
C.
D.
3、某施工队整修一条480m的道路.开工后,每天比原计划多整修20m,结果提前4天完成任务.设原计划每天整修xm,根据题意所列方程正确的是( )
A.
B.
C.
D.
4、如图,某同学用圆规画一个半径为4cm的圆,测得此时
,为了画一个半径更大的同心圆,固定A端不动,将
端向左移至
处,此时测得
,则
的长为( )
A.cm B.
cm C.
cm D.
cm
5、如图,甲、乙两盏路灯杆相距20米,一天晚上,当小明从灯甲底部向灯乙底部直行16米时,发现自己的身影顶部正好接触到路灯乙的底部已知小明的身高为
米,那么路灯甲的高为()
A. 7米 B. 8米 C. 9米 D. 10米
6、2020年4月24日,国家航天局在中国航天日线上启动仪式上公布:中国行星探测任务被命名为“天问系列”,首次火星探测任务被命名为“天问一号”.火星是与地球形貌最接近的大行星,火星也是我们的近邻,最近的时候距离地球约5500万千米.其中“5500万千米”用科学记数法表示为( )
A.550×108(米) B.55×109(米)
C.5.5×1010(米) D.0.55×1011(米)
7、如图所示,阴影是两个相同菱形的重合部分,一个小球随机的在图案上滚动,最后停留在阴影部分的概率是( )
A.
B.
C.
D.
8、如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),对称轴是x=1,现有结论:①abc>0 ②9a﹣3b+c=0 ③b=﹣2a④(﹣1)b+c<0,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
9、在,
,0,
这四个数中,属于负分数的是( ).
A. B.
C. 0 D.
10、用计算器计算cos44°的结果(精确到0.01)是( )
A. 0.90 B. 0.72 C. 0.69 D. 0.66
11、已知,
的值为____________.
12、如图,正方形ABCD的边长为4,E为边AD上一动点,连结BE,CE,以CE为边向右侧作正方形CEFG.(1)若BE=5,则正方形CEFG的面积为________;(2)连结DF,DG,则△DFG面积的最小值为______.
13、分解因式:= .
14、今年世界各地发现新冠肺炎疫情,疫情是由一种新型冠状病毒引起的,疫情发生后,科学家第一时间采集了病毒样本进行研究.研究发现这种病毒的直径约85纳米(1纳米=0.000000001米).数据85纳米用科学记数法可以表示为_________米.
15、在半径为4的圆中,120°的圆心角所对的弧长是____________.
16、在等腰中,
,
,点
在
的外部,如果
,那么
的度数为________.
17、
正方形ABCD边长为4 cm,点E,M分别是线段AC,CD上的动点,连接DE并延长,交正方形ABCD的边于点F,过点M作MN⊥DF于H,交AD于N.
(1)如图1,若点M与点C重合,求证:DF=MN;
(2)如图2,若点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);
①当点F是边AB的中点时,求t的值;
②连结FM,FN,当t为何值时△MNF是等腰三角形(直接写出t值).
18、(1)计算:.
(2)先化简,再求值:,其中
.
19、某学校为了迎接“畅想青青”体育节活动,购买了一批排球和篮球,其中排球的单价比篮球的单价少9元,已知该学校用3120元购买排球的个数与用4200元购买篮球的个数相等.
(1)求该学校购买的排球和篮球的单价各是多少元?
(2)若两种球共购买了200个,且购买的总费用不高于6280元,问至少要购买多少排球?
20、在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点且⊙O与AB、AC都相切,切点分别为D、E.
(1)求⊙O的半径;
(2)如果F为上的一个动点(不与D、E),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;
(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定自变量x的取值范围,并说明当x=y时F点的位置.
21、如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.
(1)求抛物线对应的函数关系式;
(2)点P在y轴上,点M在x轴正方向上,过点M作x轴的垂线交抛物线于点C,OP=3OM.
①当四边形OMCP为矩形时,求OM的长;
②过点C作x轴的平行线,交抛物线于另一点D,求点P在直线CD的下方时,求CD的取值范围.
22、校园雕塑是校园文化的重要载体,在中国科学技术大学校园中有一座郭沫若的雕像,雕像由像体AD和底座CD两部分组成,小天同学在地面B处测出点A和点D的仰角分别是70.5°和45°,测得CD=2.3米,求像体AD的高度.(结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
23、高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:
(1)在图中作出路灯O的位置,并作OP⊥l于P.
(2)求出路灯O的高度,并说明理由.
24、如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积
邮箱: 联系方式: