1、二次函数的图象如图所示,下列说法:①
;②
;③
;④
;⑤
;正确的个数是( )
A.1 B.2 C.3 D.4
2、一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )
A.
B.
C.
D.
3、下面四个图案中既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
4、下列事件中,是必然事件的是( )
A.购买一张彩票,中奖 B.任意画一个三角形,其内角和是 180°
C.经过有交通信号灯的路口,遇到红灯 D.射击运动员射击一次,命中靶心
5、在函数中,自变量x的取值范围是( )
A. x>3 B. x<3 C. x≠3 D. x≥3
6、在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为( )
A.2
B.3
C.4
D.6
7、如图1.的半径为
,若点
在射线
上,且
,则称点
是点
关于
的“反演点”,如图2,
的半径为2,点
在
上.
,
,若点
是点
关于
的反演点,点
是点
关于
的反演点,则
的长为( )
A. B.
C.2 D.4
8、在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球( )
A.24个
B.10个
C.9个
D.4个
9、下列二次根式中,属于最简二次根式的是( )
A. B.
C.
D.
10、如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )
A.39π
B.29π
C.24π
D.19π
11、﹣3的相反数是 ;-2的绝对值是 .
12、如图,的半径为4,过圆外一点
画
的两条切线
和
,
、
为切点,若
,则阴影部分的面积是__________.(结果保留
)
13、如图,是
的直径,点E是
的中点,过点E的切 线分别交
的延长线于点
若
,
的半径是2,则图形中阴影部分的面积是_______.
14、计算:(
+
)=_____.
15、计算的值为________.
16、当_______时,分式
的值为零.
17、在平面直角坐标系xOy中,直线与双曲线
(
)的一个交点为
.
(1)求k的值;
(2)将直线向上平移b(b>0)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线
(
)的一个交点记为Q.若
,求b的值.
18、如图,直角坐标系中一条圆弧经过网格点A、B、C,其中B点坐标是(4,4),
(1)求出圆心P的坐标;
(2)求该圆弧的弧长.
19、如图1,在△ABC中,∠ABC=90°,AO是△ABC的角平分线,以O为圆心,OB为半径作圆交BC于点D,
(1)求证:直线AC是⊙O的切线;
(2)在图2中,设AC与⊙O相切于点E,连结BE,如果AB=4,tan∠CBE=.
①求BE的长;②求EC的长.
20、如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.
(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.
(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;
(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.
①请你直接写出m的值和四边形AA2CC2的形状;
②若AB=,请直接写出AA2的长.
21、(1) 请你调查自己家一周内每天消耗粮食的数量.
(2) 统计本班学生这一周内消耗粮食的总数,并用科学记数法表示.
(3) 根据你收集的数据,估计全校学生的家庭,一周内消耗粮食的总数并用科学记数法表示.
22、冰墩墩将熊猫形象与富有超能量的冰晶外壳相结合,整体形象酷似航天员.小丽爸爸买了四个外包装完全相同的冰墩墩手办,其中两个为经典造型,两个为冰球造型,在没有拆外包装的情况下,小丽和哥哥各自从这四个手办中随机拿走一个.
(1)若小丽从这四个手办中拿走一个,则小丽拿走的是经典造型的概率为________.
(2)若小丽先拿走一个,哥哥再从剩下的三个中随机拿走一个,求小丽和哥哥拿走的手办是不同造型的概率.
23、如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.
(1)求抛物线的解析式;
(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.
(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.
24、在平面直角坐标系xOy中,已知抛物线和直线
.
(1)抛物线M的对称轴是___________;
(2)抛物线M的顶点为___________;
(3)若直线与抛物线M有两个公共点,它们的横坐标记为
,
,直线
与直线l的交点横坐标记为
.若当
时,总有
,请结合函数图象,求a的取值范围.
邮箱: 联系方式: