1、疫情期间,小明要用16元钱买A、B两种型号的口罩,两种型号的口罩必须都买,16元全部用完.若A型口罩每个3元,B型每个2元,则小明的购买方案有( )
A.2种
B.3种
C.4种
D.5种
2、若一个方程组的一个解为,则这个方程组不可能是( )
A.
B.
C.
D.
3、已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为( )
A.1
B.﹣1
C.0
D.﹣2
4、二次根式在实数范围内有意义,则a的取值范围是( )
A.a≤3
B.a≥3
C.a<3
D.a>3
5、已知,
,
三点在数轴上从左向右排列,且
,原点
为
中点,则点
所表示的数是( ).
A.-3
B.-2
C.-1
D.1
6、如图,在正方形ABCD中,边长AD=2,分别以顶点A、D为圆心,线段AD的长为半径画弧交于点E,则图中阴影部分的面积是( )
A. B.
C.
D. π﹣
7、我校举行A,B两项趣味比赛,甲、乙两名学生各自随机选择其中一项,则他们恰好参加同一项比赛的概率是( )
A. B.
C.
D.
8、如图1为某立交桥示意图(道路宽度忽略不计),A﹣F﹣G﹣J为高架,以O为圆心的圆盘B﹣C﹣D﹣E位于高架下方,其中AB,AF,CH,DI,EJ,GJ为直行道,且AB=CH=DI=EJ,AF=GJ,弯道FG是以点O为圆心的圆上的一段弧(立交桥的上下高度差忽略不计),点B,C,D,E是圆盘O的四等分点.某日凌晨,有甲、乙、丙、丁四车均以10m/s的速度由A口驶入立交桥,并从出口驶出,若各车到圆心O的距离y(m)与从A口进入立交后的时间x(s)的对应关系如图2所示,则下列说法错误的是( )
A.甲车在立交桥上共行驶10s
B.从I口出立交的车比从H口出立交的车多行驶30m
C.丙、丁两车均从J口出立交
D.从J口出立交的两辆车在立交桥行驶的路程相差60m
9、现有个同类产品,其中有
个正品,
个次品,从中任意抽取
个,则下列事件为必然事件的是( )
A.3个都是正品
B.至少有一个是次品
C.3个都是次品
D.至少有一个是正品
10、若整数a既使关于x的分式方程的解为正数,又使关于x的一元二次方程x2﹣2x+2a﹣5=0有实数解,则符合条件的所有a的和是( )
A. 0 B. 2 C. 3 D. 4
11、A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.
12、如图,已知双曲线,
,点P为双曲线
上的一点,且
轴于点A,
轴于点B,PA,PB分别交双曲线
于D,C两点,则
的面积为________.
13、如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=-、y=
的图象交于B、A两点,则tanA=_____________.
14、一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是______.
15、计算2+(-3)的结果为______.
16、将一把直尺与一块三角板如图所示放置,若,则
的度数为________.
17、化简与计算:
(1);
(2)
18、如图.点D是Rt△ABC斜边BC的中点,⊙O是△ABD的外接圆,交AC于点F. DE平分∠ADC,交AC于点E.
求证:DE是⊙O的切线;
若CE=4,DE=2,求⊙O的直径.
19、解不等式:1﹣>
.
20、为了迎接生地结业考试,地理龙老师在自己任教的甲乙两班进行了一次定时练习,为大致了解这次练习两个班学生的成绩状况,龙老师从甲、乙两班各随机抽取10名学生的成绩进行整理和分析(成绩用表示),共分成四个组:A.
,B.
,C.
,D.
.另外给出了部分信息如下:
甲班10名学生的成绩:99,80,99,86,99,96,90,100,89,82.
乙班10名学生的成绩在C组的数据:94,90,94.
甲乙两班被抽取学生成绩统计表 | ||
班级 | 甲班 | 乙班 |
平均数 | 92 | 92 |
中位数 | 93 | |
众数 | 100 | |
方差 | 52 | 50.4 |
根据以上信息,解答下列问题:.
(1)上面图表中的___________,
___________,扇形统计图中“C组”所对应的圆心角的度数为____________度;
(2)根据以上信息,你认为哪个班级的学生这次地理定时练习的成绩较好?说明理由(从两个方面加以说明).
(3)甲乙两班共有120名学生参加了此次定时练习,估计成绩为较好的学生有多少人?
21、(1)计算 (2)化简:
22、如图,已知AB是⊙O的直径,BC、EF是⊙O的弦,且EF垂直AB于点G,交BC于点H,CD与FE延长线交于D点,CD=DH.
(1)求证:CD是⊙O的切线;
(2)若H为BC中点,AB=10,EF=8,求CD的长.
23、如图,已知▱ABCD,AB=m,AD=n,将▱ABCD绕点D逆时针旋转,得到▱A’B’CD,点A’在CD延长线上.
(1)若n=4,当B’A’所在直线恰好经过点A时,求点A运动到A’所经过的路径的长度;
(2)连接AC、BD相交于点O,连接OA’、DB’,当四边形OA’B’D为平行四边形时,求的值.
24、问题发现:
(1)如图①,在中,
,
,
,点
是
的中点,点
在
边上,将
沿着
折叠后得到
,连接
并使得
最小,请画出符合题意的点
;
问题探究:
(2)如图②,已知在和
中,
,
,
,连接
,点
是
的中点,连接
,求
的最大值;
问题解决:
(3)西安大明宫遗址公园是世界文化遗产,全国重点文物保护单位,为了丰富同学们的课外学习生活,培养同学们的探究实践能力,周末光明中学的张老师在家委会的协助下,带领全班同学去大明宫开展研学活动.在公园开设的一处沙地考古模拟场地上,同学们参加了一次模拟考古游戏.张老师为同学们现场设计了一个四边形的活动区域,如图③所示,其中
为一条工作人员通道,同学们的入口设在点
处,
,
,
,
米.在上述条件下,小明想把宝物藏在距入口
尽可能远的
处让小鹏去找,请问小明的想法是否可以实现?如果可以,请求出
的最大值及此时
区域的面积,如果不能,请说明理由.
邮箱: 联系方式: