1、下列四个图案中,是中心对称图形的是( )
A. B.
C.
D.
2、不等式组的解集在数轴上表示正确的是( )
A.
B.
C.
D.
3、下列图形中,即是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
4、反比例函数的图像可能是( )
A.
B.
C.
D.
5、张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为( )
A. y=3500x B. x=3500y C. y= D. y=
6、81的平方根是( ).
A.9
B.
C.3
D.
7、不透明袋子中有个红球和
个白球,这些球除颜色外无其他差别,从袋中随机取出
个球,是红球的概率是( )
A. B.
C.
D.
8、近年来,国家高度重视精准扶贫,收效显著.据不完全统计6年间全国约有82000000人脱贫.数字82000000用科学记数法表示为( )
A.
B.
C.
D.
9、下列选项中,的倒数是( )
A.
B.
C.2
D.
10、在平面直角坐标系中,函数的图象经过( )
A.一、二、三象限
B.一、二、四象限
C.一、三、四象限
D.二、三、四象限
11、如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为_____.
12、某瓜弄采用大棚栽培技术种植了一亩良种西瓜,约产800个,在西瓜上市前该瓜弄随机地摘了10个西瓜,称重量如下:
重量(单位:千克) 6.4 7.1 7.5 8.4
数量(单位:个) 3 4 2 1
计算这10个西瓜平均重________千克,估计这亩地共产西瓜约________千克.
13、计算:______.
14、如图,点A在双曲线y=的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为
,则k的值为______.
15、如图,在平面直角坐标系中,反比例函数(
)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=_____.
16、如图,点D是Rt△ABC的斜边AB上一点,DE⊥BC于E,DF⊥AC于F,若AF=15,BE=10,则四边形DECF的面积是__________.
17、如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=4,∠BAC=45°.
(1)求点A,C的坐标;
(2)反比例函数y=的图象经过点B,求k的值;
(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
18、如图,在矩形中,
,
,连接
,并过点
作
,垂足为
,直线
垂直
,分别交
、
于点
、
.直线
从
出发,以每秒
的速度沿
方向匀速运动到
为止;点
沿线段
以每秒
的速度由点
向点
匀速运动,到点
为止,直线
与点
同时出发,设运动时间为
秒(
).
(1)线段_________;
(2)连接和
,当四边形
为平行四边形时,求
的值;
(3)在整个运动过程中,当为何值时
的面积取得最大值,最大值是多少?
19、为了倡导“节约用水,从我做起”,巴中市政府决定对该市直属机关300户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不完整的统计表:
月平均用水量(吨) | 3 | 4 | 5 | 6 | 7 |
频数(户数) | 4 | 9 | 10 | 7 | |
频率 | 0.08 | 0.40 | 0.14 |
请根据统计表中提供的信息解答下列问题:
(1)填空:______,
______,
______.
(2)根据样本数据,估计该市直属机关300户家庭中月平均用水量不超过5吨的约有多少户?
(3)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.
20、某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人积极性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的部分函数图象为折线OA-AB-BC,如图所示.
(1)求工人一天加工零件不超过20个时每个零件的加工费.
(2)求40≤≤60时y与x的函数关系式.
(3)小王两天一共加工了60个零件,共得到加工费220元.在这两天中,小王第一天加工零件不足20个,求小王第一天加工的零件个数.
21、我市某中学学生会在开展“厉行勤俭节约,反对铺张浪费”的主题教育活动中,在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制了如下统计表:根据所给信息,回答下列问题:
选项 | 频数 | 频率 |
A | 36 | m |
B | n | 0.2 |
C | 6 | 0.1 |
D | 6 | 0.1 |
(1)统计表中:m=______;n=______.
(2)该中学有1800名学生晚饭在校就餐,根据调查结果,估计当天晚饭有多少人能够把饭和菜全部吃完?
(3)为了对同学们浪费的行为进行纠正,校学生会从饭和菜都有剩的甲、乙、丙、丁四名同学中任取2位同学进行批评教育,请用列表法或树状图法求恰好抽到甲和丁的概率.
22、在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;
(2)通过观察、测量、猜想:的值是否为定值?如果是,请结合图②证明你的猜想,如果不是,请说明理由.
23、如图,是
的直径,
,
是
的中点,
交
于点
.
(1)求证:与
相切;
(2)若,
,求
的半径长.
24、计算:.
邮箱: 联系方式: