1、下列四个图案中,是中心对称图形的是( )
A. B.
C.
D.
2、小红和小花在路灯下的影子一样长,则她们的身高关系是( )
A. 小红比小花高 B. 小红比小花矮
C. 小红和小花一样高 D. 不确定
3、小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表两组数据,那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是( )
小明 | 2 | 6 | 7 | 7 | 8 |
小丽 | 2 | 3 | 4 | 8 | 8 |
A. 小明的平均数小于小丽的平均数
B. 两人的中位数相同
C. 两人的众数相同
D. 小明的方差小于小丽的方差
4、如图,一次函数 与
轴,
轴交于
两点,与反比例函数
相交于
两点,分别过
两点作
轴,
轴的垂线,垂足为
,连接
,有下列四个结论:①
与
的面积相等;②
∽
;③
;④
,其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
5、下列各数中,最小的实数是( )
A.0 B.π C.﹣D.﹣1
6、已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A、B两个样本的下列统计量对应相同的是( )
A. 平均数 B. 方差
C. 中位数 D. 众数
7、如图,矩形ABCD是由边长为1的五个小正方形拼成,O是第2个小正方形的中心,将矩形ABCD绕O点逆时针旋转90°得矩形,现用一个最小的圆覆盖这个图形,则这个圆的半径是( )
A.
B.
C.
D.
8、如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为( )
A.
B.
C.
D.
9、下列运算正确的是( )
A. B.
+
=
C.
D.x
÷(﹣xy)=﹣
10、估计的值在( )
A.5和6之间
B.4和5之间
C.3和4之间
D.2和3之间
11、“石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率__________.
12、点是二次函数
的图象上两点,则
____
(填“>”、“<”或“=” )
13、如图,已知点为线段
的中点,
且
,连接
,
,
是
的平分线,与
相交于点
,
于点
,交
于点
,则
的长为__________.
14、我们规定:一个多边形上任意两点间距离的最大值称为该多边形的“直径”.现有两个全等的三角形,边长分别为4、4、.将这两个三角形相等的边重合拼成对角线互相垂直的凸四边形,那么这个凸四边形的“直径”为______.
15、在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.
①若A、O、C三点在同一直线上,且∠ABO=2α,则 =_____(用含有α的式子表示);
②固定△AOB,将△COD绕点O旋转,PM最大值为_____.
16、写出一个图象位于第二、第四象限的反比例函数的解析式________.
17、某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学.
18、下列关系式是否成立(0<α<90°),请说明理由.
(1)sinα+cosα≤1;
(2)sin2α=2sinα.
19、参加学校运动会,八年级1班第一天购买了水果,面包,饮料,药品等四种食品,四种食品购买金额的统计图表如图所示,若将水果、面包、药品三种食品统称为非饮料食品,并规定t=.
(1)①求t的值;
②求扇形统计图中钝角∠AOB的度数.
(2)根据实际需要,该班第二天购买这四种食品时,增加购买饮料金额,同时减少购买面包金额,假设增加购买饮料金额的25%等于减少购买面包的金额,且购买面包的金额不少于100元,求t的取值范围.
金额 食品 | 金额(单位:元) |
水果 | 100 |
面包 | 125 |
饮料 | 225 |
药品 | 50 |
20、已知正方形,将边
绕点
顺时针旋转
至线段
,
的角平分线所在直线与直线
相交于点
.过点
作直线
的垂线
,垂足为点
.
(1)当为锐角时,依题意补全图形,并直接写出
的度数;
(2)在(1)的条件下,写出线段和
之间的数量关系,并证明;
(3)设直线与直线
相交于点
,若
,直接写出线段
长的最大值和最小值.
21、四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD
(1)如图1,求证:AB=AD;
(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;
(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.
22、规定:如果一个凸四边形有一组对边平行,一组邻边相等,那么称此凸四边形为广义菱形.
(1)下列图形是广义菱形的有:_________.
①平行四边形; ②矩形; ③菱形; ④正方形;
(2)若从M、N的坐标分别为(0,1),(0,-1),P是二次函数y=的图象上在第一象限内的任意一点,PQ垂直直线y= -1于点Q,试说明四边形PMNQ是广义菱形;
(3)如图,在反比例函数y=(x>0)的图像上有一点A(6,2),在y轴上有一点B (0,4),请你在x轴和反比例函数y=
(x>0)上分别找出两点R、T,使得四边形ARBT是广义菱形且AR=BR,请直接写出R、T的坐标.
23、已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2.点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.
(1)求这条抛物线的解析式;
(2)用含m的代数式表示线段CO的长;
(3)当tan∠ODC=时,求∠PAD的正弦值.
24、某处靠近海岸的海域有一片暗礁,当地海洋管理部门在海岸上建造了两座灯塔,
,通告所有船只不要进入以
为弦的弓形区域(阴影部分)内(含边界)以免触礁,如图所示.现有一艘货轮
正向暗礁区域靠近,当
多大时,才能避开暗礁?
邮箱: 联系方式: