1、下列命题中,假命题是( )
A.平行四边形是中心对称图形
B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等
C.对于简单的随机样本,可以用样本的方差去估计总体的方差
D.若x2=y2,则x=y
2、如图,在边长为5的菱形中,对角线
,
于点E,
与
交于点F,则
的值为( )
A.
B.
C.
D.
3、如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=( )
A. 5 B. 7 C. 9 D. 11
4、不等式-3x+6≤4-x的解集在数轴上表示正确的是 ( )
A. B.
C.
D.
5、已知的三边长分别为,
,
,
的两边长分别是
和
,如果
与
相似,那么
的第三边长应该是( )
A.
B.
C.
D.
6、如图,在边长为4的正方形中,动点
从
点出发,以每秒1个单位长度的速度沿
向
点运动,同时动点
从
点出发,以每秒2个单位长度的速度沿
方向运动,当
运动到
点时,
点同时停止运动.设
点运动的时间为t秒,
的面积为
,则表示
与
之间的函数关系的图象大致是( )
A. B.
C. D.
7、如图是一个由5个相同的正方体组成的几何体,它的左视图是( )
A. B.
C. D.
8、小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:
大本营 | 1 对自己说 “加油!” | 2 后退一格 | 3 前进三格 | 4 原地不动 | 5 对你的小伙伴说“你好!” | 6 背一首古诗 |
例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是( )
A.
B.
C.
D.
9、关于x的一元二次方程x2+4x+c=0有实数根,则c应满足的条件是( )
A.c≤4
B.c≥4
C.c<4
D.c>4
10、如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4,则FD的长为( )
A.2
B.4
C.
D.2
11、某学校为了增强学生体质,准备购买一批体育器材,已知A类器材比B类器材的单价低10元,用150元购买A类器材与用300元购买B类器材的数量相同,则B类器材的单价为_____元.
12、公元前240年前后,在希腊的亚历山大城图书馆当馆长的埃拉托色尼(Eratosthenes)通过测得有关数据,求得了地球圆周的长度.他是如何测量的呢?如图所示,由于太阳距离地球很远,从太阳射来的光线可以看作平行线,在同一时刻,光线与A城和地心的连线所夹的锐角记为
,光线与B城和地心的连线
重合,通过测量A,B两城间的距离(即
)和
的度数,利用圆的有关知识,地球圆周的长度就可以大致算出来了.已知
,若
,则地球的周长约为_____
.
13、已知二次函数的图象(0≤x≤3)如图所示,则当0≤x≤3时,函数值y的范围是________.
14、抛物线的顶点坐标是__________.
15、小红家的阳台上放置了一个晾衣架如图1,图2是晾衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量,
,
,现将晾衣架完全稳固张开,扣链E成一条线段,且
.垂挂在衣架上的连衣裙总长度小于________cm时,连衣裙才不会拖到地面上.
16、有支球队参加篮球比赛,每两队之间都比赛一场,共比赛了45场,则根据题意列出方程__.
17、如图,函数的图象经过点
,
两点,与x轴的另一个交点为C,m,n分别是方程
的两个实数根,且
.
(1)求m,n的值以及函数的解析式:
(2)设P是抛物线第一象限上一动点,连接
,
,当
的面积最大时,求点P的坐标,并求出最大面积.
18、有一种用“☆”定义的新运算:对于任意实数a,b都有a☆b=b2+a.例如7☆4=42+7=23.
(1) 已知m☆2的结果是6,则m的值是多少?
(2) 将两个实数n和n+2用这种新定义“☆”加以运算,结果为4,则n的值是多少?
19、计算:4sin30°﹣cos45°+tan260°.
20、在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同.
(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是 ;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.(请利用树状图或列表法说明)
21、某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB——BC——CD所示(不包括端点A).
(1)当100<x<200时,直接写y与x之间的函数关系式.
(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?
22、现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
23、在平行四边形ABCD中,对角线AC、BD交于点O,若AB=BC,过点A作BC的垂线交BC于点E,交BD于点M,∠ABC>60°.
(1)若ME=3,BE=4,求EC的长度.
(2)如图,延长CE至点G;使得EC=GE;过点G作GF垂直于AB的延长线于点H,交AE的延长线于点F,
求证:AE=GF+EF.
24、已知直线y1=kx+2n-1与直线y2=(k+1) x-3n+2相交于点M.M的坐标x满足-3<x<7,求整数n的值.
邮箱: 联系方式: